Viele Varianten führen zu weißem Laserlicht

Mittelhessisches Forschungsteam bündelt Know-how aus Physik und Chemie, um Mechanismus der Weißlichterzeugung zu erklären

Gute Ausstrahlung kommt nicht von alleine: Neuartige Halbleiterverbindungen eignen sich dazu, gerichtetes weißes Licht zu erzeugen, wenn ihre Seitengruppen eine ausreichende Elektronendichte aufweisen. Das hat eine mittelhessische Forschungsgruppe aus Chemie und Physik herausgefunden, indem sie eine ganze Serie nicht-kristalliner Verbindungen herstellte und deren Eigenschaften studierte; das Team präzisierte damit bisherige Erklärungsansätze. Die Wissenschaftlerinnen und Wissenschaftler berichten im Fachmagazin „Angewandte Chemie“ über ihre Ergebnisse.

Weiße Leuchtdioden (LEDs) haben als langlebige und stromsparende Lichtquellen Einzug in fast jeden Haushalt gehalten. Sie strahlen Licht in alle Richtungen gleichmäßig ab, während Laser gebündeltes Licht erzeugen – je nach Wellenlänge in unterschiedlichen Farben.

Schon vor drei Jahren stellte das Team um Chemieprofessorin Dr. Stefanie Dehnen von der Philipps-Universität Marburg und den Physiker Professor Dr. Sangam Chatterjee von der Justus-Liebig-Universität Gießen ein maßgeschneidertes Material vor, das die Vorzüge von weißen Leuchtdioden und Laser kombiniert: Wird die Verbindung mit einem handelsüblichen Infrarotlaser angeregt, so strahlt es räumlich gerichtetes weißes Licht aus. „Diese Lichtquelle könnte einmal in der Mikroskopie oder für medizinische Anwendungen eingesetzt werden“, sagt Chatterjee voraus.

Aber wie erzeugt das neue Material gebündeltes Weißlicht? Dieser Fragestellung widmet sich in Mittelhessen eine eigene Forschungsgruppe der Deutschen Forschungsgemeinschaft. Das Team untersuchte eine ganze Serie ähnlicher Substanzen, deren Kern aus Zinnatomen in Kombination mit Schwefel- oder Selenatomen besteht; an die Zinnatome sind organische Seitengruppen geknüpft – die Fachleute sprechen von Substituenten. „Wir verfolgen das Ziel, die Bibliothek der verwendbaren Stoffe massiv auszuweiten und diese zu untersuchen“, erklärt Dehnen.

Die Forschergruppe erzeugte neun Verbindungen desselben Typs, in denen nur einzelne Bestandteile ausgetauscht wurden, vor allem die Seitengruppen. Mit einer Ausnahme eignen sich alle Verbindungen dazu, gerichtetes Weißlicht zu erzeugen – bei dieser Ausnahme handelt es sich um eine kristalline Verbindung.

„Die Entstehung des Weißlichts mithilfe der nicht-kristallinen Substanzen ist hingegen nach wie vor nicht geklärt“, sagt Dehnen. „Die neuen Einblicke helfen uns, zu verstehen, welche Voraussetzungen erfüllt sein müssen, damit gerichtetes Weißlicht entsteht. Wir widerlegen damit unter anderem unsere frühere Annahme, dass unbedingt eine aromatische Seitengruppe erforderlich sei.“ Unverzichtbar sei hingegen eine ausreichende Elektronendichte in diesem Substituenten, wie sie sich in einer einfachen ringförmigen Kohlenwasserstoffgruppe findet, erläutert Chatterjee.

Professor Dr. Sangam Chatterjee leitet die Arbeitsgruppe Spektroskopie und Optik an der Justus-Liebig-Universität Gießen. Professorin Dr. Stefanie Dehnen lehrt Anorganische Chemie an der Philipps-Universität Marburg; im Sommer 2019 ist sie in den Vorstand der Gesellschaft Deutscher Chemiker (GDCh) gewählt worden und wird dort ab Januar 2020 als Vizepräsidentin agieren.

Der Forschungscampus Mittelhessen ist eine hochschulübergreifende Einrichtung der Justus-Liebig-Universität Gießen, der Philipps-Universität Marburg und der Technischen Hochschule Mittelhessen, deren Aufgabe in der Stärkung der regionalen Verbundbildung in der Forschung, Nachwuchsförderung und Forschungsinfrastruktur liegt. Die Entwicklung zukunftsträchtiger Technologien und Materialien ist das zentrale Ziel der gemeinsamen Forschungsaktivitäten der Forschenden im Campus-Schwerpunkt „Materialforschung“. Website des Campus-Schwerpunkts „Materialforschung“: https://www.fcmh.de/mat

Die Deutsche Forschungsgemeinschaft förderte die Forschungsarbeiten durch ihre Forschungsgruppe 2824 sowie durch das Heisenberg-Programm.

 

BILD: Hell wie der lichte Tag, geschärft wie ein Laserschwert: Regt man die neuartigen, nicht-kristallinen Verbindungen mit einem handelsüblichen Rotlichtlaser an, so entsteht gerichtetes Weißlicht. © Nils W. Rosemann

Weitere Informationen: https://www.uni-marburg.de

Erstmals gelingt Erweiterung in die zweite Dimension: Bottom-up-Synthese von kristallinen 2D-Polymeren
Bitkom präsentiert Digital-Ranking der 81 deutschen Großstädte: Das sind die Top Ten

Ähnliche Beiträge

Menu