Biegen, nicht brechen: Software für das Glasdesign

Informatiker_innen entwickeln ein Designwerkzeug, das den Einsatz kosteneffizienter Technologie für gebogene Glasscheiben ermöglicht. Das Werkzeug basiert auf einem tiefen neuronalen Netzwerk und ermöglicht die freie Gestaltung von ansprechenden Glasfassaden.

Gebogene Glasfassaden können atemberaubend schön sein, aber traditionelle Bauweisen sind extrem teuer. Scheiben werden in der Regel durch „Heißbiegen“ hergestellt, bei dem Glas erhitzt und mit Hilfe einer Form oder speziellen Maschinen geformt wird. Das ist ein energieintensives Verfahren, bei dem überschüssiger Abfall in Form von einzelnen Formen anfällt. Kaltgebogenes Glas ist eine billigere Alternative, bei der flache Glasscheiben gebogen und direkt auf der Baustelle an Rahmen befestigt werden. Angesichts der Zerbrechlichkeit des Materials ist es jedoch äußerst schwierig, eine Form zu finden, die sowohl ästhetisch ansprechend als auch herstellbar ist. Mit einem interaktiven, datenunterstützten Designwerkzeug können Architekt_innen nun genau dies tun.

Die von einem Team von Wissenschaftler_innen des IST Austria entwickelte Software ermöglicht es den Benutzer_innen, das Fassadendesign interaktiv zu manipulieren und sofortige Rückmeldung über die Herstellbarkeit und Ästhetik der Verkleidung zu erhalten – ein sehr bequemer Weg, um die verschiedenen Realisierungen des Designs zu erforschen. Die Software basiert auf einem tiefen neuronalen Netzwerk, das mit speziellen physikalischen Simulationen trainiert wurde, um die Formen und die Herstellbarkeit von Glasscheiben vorherzusagen. Sie ermöglicht den Benutzer_innen nicht nur die interaktive Anpassung eines Entwurfs, sondern auch die automatische Optimierung eines gegebenen Designs und lässt sich leicht in den üblichen Arbeitsablauf eines Architekturbüros integrieren. Die Software und Forschungsergebnisse wurden auf der SIGGRAPH Asia 2020 vorgestellt.

Heißgebogenes und kaltgebogenes Glas

Heiß gebogenes Glas ist seit dem 19. Jahrhundert in Gebrauch, obwohl es erst in den 1990er-Jahren allgemein verfügbar wurde. Dennoch ist das Verfahren nach wie vor unerschwinglich teuer und die Logistik für den Transport von gebogenem Glas ist besonders kompliziert. Eine Alternative, kaltgebogenes Glas, wurde vor etwa zehn Jahren entwickelt. Es war billig in der Herstellung, leichter zu transportieren und die geometrische und visuelle Qualität waren besser als warm gebogenes Glas. Die Technik erlaubte es den Architekt_innen auch, spezielle Glasarten zu verwenden und die Verformungsspannung der Paneele genau abzuschätzen.

Das Problem war nur, dass das Design kaltgebogener Glasfassaden ein enormes rechnerisches Problem darstellt. Ruslan Guseinov, Postdoc am IST Austria und Co-Erstautor der vorgestellten Publikation, erläutert: „Es ist zwar möglich zu berechnen, wann ein einzelnes Paneel bricht, oder eine Sicherheitsmarge für zusätzliche Lasten zu simulieren, aber die gesamte Fassade, die oft Tausende von Paneelen umfasst, ist einfach zu komplex für herkömmliche Designwerkzeuge.“ Außerdem würde die Verwendung eines Computers mit traditionellen Berechnungsmethoden zur Ermittlung von Spannungen und Verformungen für jede Designänderung zu lange dauern, um brauchbar zu sein.

Ermöglichung einer neuen Technologie

Daher war es das Ziel des Teams, eine Software zu entwickeln, die es auch Laien ermöglicht, eine Glasoberfläche interaktiv zu bearbeiten und gleichzeitig Echtzeitinformationen über die gebogene Form und die damit verbundenen Spannungen für jedes einzelne Paneel zu erhalten. Die Wissenschaftler_innen entschieden sich für einen datengesteuerten Ansatz: Das Team führte mehr als eine Million Simulationen durch, um eine Datenbank möglicher gebogener Glasformen aufzubauen, die in einem in der Architektur üblichen CAD-Format (Computer-Aided Design) dargestellt wurden. Dann wurde ein tiefes neuronales Netz auf Basis dieser Daten trainiert. Dieses Netzwerk prognostiziert präzise eine oder zwei mögliche Glasformen für einen gegebenen viereckigen Begrenzungsrahmen. Diese gefundenen Designs können dann in einer von Architekt_innen entworfenen Fassade verwendet werden.

Dass dieses Netzwerk mehrere Formen vorhersagt, ist „einer der überraschendsten Aspekte des tiefen neuronalen Netzwerks“, fügt Konstantinos Gavriil, Co-Erstautor und Forscher an der TU Wien, hinzu. „Wir wussten, dass ein bestimmter Rahmen das Paneel nicht eindeutig definiert, aber wir hatten nicht erwartet, dass das Netzwerk in der Lage sein würde, mehrere Lösungen zu finden, obwohl es noch nie zwei alternative Felder für einen einzigen Rahmen gesehen hatte.“ Aus der Menge der Lösungen wählt das Programm die Scheibengeometrie aus, die am besten zur Fassadengestaltung passt, wobei Eigenschaften wie die Glätte der Rahmen und Reflexionen berücksichtigt werden.

Die Benutzer_innen können danach ihr Modell anpassen, um die Belastung zu reduzieren und das Gesamterscheinungsbild zu verändern. Sollte sich dies als zu schwierig erweisen, kann der Entwurf jederzeit automatisch optimiert werden, was eine „Best Fit“-Lösung ergibt, welche die Anzahl der nicht realisierbaren Paneele erheblich reduziert. Am Ende können entweder alle Glaspaneele sicher durch Kaltbiegen konstruiert werden, oder die Benutzer_innen können sich dafür entscheiden, einige von ihnen durch Heißbiegen zu produzieren. Sobald die Anwender_innen mit dem Design zufrieden sind, exportiert das Programm die für die Konstruktion der Fassade erforderlichen Formen und Rahmengeometrien.

Präzision und Effizienz

Um die Genauigkeit der Simulationen zu testen, fertigte das Forschungsteam Rahmen und Glasplatten an, die unter extrem hoher Belastung standen. Im Extremfall beobachteten sie eine minimale Abweichung von den vorhergesagten Formen von weniger als einer Paneeldicke, und alle Glaspaneele waren wie erwartet herstellbar. Das Team verifizierte ferner, dass das datengesteuerte Modell die Ergebnisse der Simulationen getreu und effizient reproduziert.

„Wir glauben, dass wir ein neuartiges, praktisches System geschaffen haben, das geometrisches und fertigungsgerechtes Design miteinander verbindet und es den Designer_innen ermöglicht, effizient ein Gleichgewicht zwischen wirtschaftlichen, ästhetischen und technischen Kriterien zu finden“, schließt Bernd Bickel, Professor am IST Austria. In Zukunft könnte das Programm um zusätzliche Funktionen für praktisches architektonisches Design erweitert oder zur Erforschung verschiedener Materialien und komplexerer mechanischer Modelle eingesetzt werden.

Originalpublikation

K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics., öffnet eine externe URL in einem neuen Fenster

Weitere Informationen

Video: https://youtu.be/FStBxKC4GkQ, öffnet eine externe URL in einem neuen Fenster

Projektseite: http://visualcomputing.ist.ac.at/publications/2020/CDoCBGF/, öffnet eine externe URL in einem neuen Fenster

Dieses Projekt wurde im Rahmen des Forschungs- und Innovationsprogramms Horizont 2020 der Europäischen Union unter der Förderungsnummer 675789 – Algebraic Representations in Computer-Aided Design for complEx Shapes (ARCADES), vom Europäischen Forschungsrat (ERC) unter der Förderungsnummer 715767 – MATERIALIZABLE: Intelligent fabrication-oriented Computational Design and Modeling und im SFB-Transregio „Discretization in Geometry and Dynamics“ durch die Förderung I 2978 des Österreichischen Wissenschaftsfonds (FWF) gefördert. F. Rist und K. Gavriil wurden teilweise durch KAUST-Basisförderung unterstützt.

Quelle: https://www.tuwien.at

Bild: Benutzer_innen können ihr ursprüngliches Konzept leicht anpassen, um eine beeindruckende Glasfassade zu schaffen, die durch Kaltbiegen hergestellt werden kann. © Ruslan Guseinov | IST Austria, Quelle: https://www.tuwien.at

 

Sonnenaktivität über ein Jahrtausend rekonstruiert
Maschinelles Sehen: Verborgene Objekte erkennen – mit Terahertzstrahlen

Ähnliche Beiträge

Menu